大家好,关于网络时间同步时钟很多朋友都还不太明白,今天小编就来为大家分享关于ios时间显示秒的知识,希望对各位有所帮助!
本文目录
一、在通信网络中,时间同步和时钟同步应该怎么理解
1、时间同步和时钟同步是一个概念,在大数据、企业局域网、云计算都需要卫星同步,因为各个服务器之间的时间会产生差异,影响**的稳定运行。
2、在科技的发展下GPS北斗卫星时钟同步也得到了广泛应用,比如工业、科研、航空航天、公共场所等领域都用到了GPS北斗卫星时钟同步,GPS北斗卫星时钟同步以卫星时间为基准授时准确,替代了传统钟表授时的单一和时间误差大等缺点。
3、GPS北斗卫星时钟同步是指接收GPS北斗卫星信号,并通过NTP网络协议进行对时的时间服务器。XBD211NTP网络时间服务器配置卫星信号**,可接收单北斗或单GPS卫星以及GPS北斗混合的信号,并使用网络信号授时,每路网口都为**局域网互不干扰,GPS北斗卫星时钟同步可以给多种不同的时间**进行授时。
二、如何将电脑的时间设置成与网络上的时间同步
在电脑的“日期和时间”窗口中可以将电脑的时间设置成与网络上的时间同步,具体**作请参照以下步骤。
1、在电脑上的任务栏中找到时间显示的区域,然后进行点击。
2、然后在出现的窗口中点击“更改日期和时间设置···”选项。
3、在“日期和时间”的窗口中点击“Internet时间”,在其页面中点击“更改设置”按钮。
4、然后勾选“与Internet时间服务器同步”选项,勾选以后,点击“立即更新”,再点击“确定”按钮。
5、完成以上设置后,即可将电脑的时间设置成与网络上的时间同步。
三、什么是网络时间同步
1、将通信网上各种通信设备或计算机设备的时间信息(年月日时分秒)基于UTC(协调世界时)时间偏差限定在足够小的范围内(如100ms),这种网络同步过程叫做网络时间同步。
2、一般来说,时间同步应用最广泛的是在INTERNET上的计算机。计算机时钟用于记录事件的时间信息,如E-MAIL信息、文件创建和访问时间、数据库处理时间等。时钟还被用于控制备份的**作、为设计自动构造编译器检查文件是否变动过以及其他应用。如果计算机时钟不精确,那么这些应用中很多将无**常工作。对时间敏感的计算机**,如金融业界服务器、EDI、大型分布式商业数据库、航天航空控制计算机等,更需要高精度的时间信息。交通运输业的时间显示**,如地铁时刻表、显示**、机场时刻表显示**,如果偏差较大,可能会影响旅客的旅行。中新创科(DNTS-7)实现高精度网络时间同步,解决需要高精度的时间信息场合问题,提供一套完整的方案。
3、 CDMA基站也需要UTC信息。依赖GPS卫星时间同步的CDMA**,基站之间的时间同步均以公共CDMA时标为基准,该时标通过接收GPS定时,同步于UTC时间。BTS需要绝对时间以获取从MS发送的CDMA信号。在软切换中,可能在选择器中发生邮件指令不匹配,这是由于BS消息路径队列延迟。为防止这种不匹配,所有BTS和BSC必须网络时间同步。时间同步功能还应用在电话计费方面,这是因为多**的出现和分时段费率的存在。网间计费不一致所造成的话单损失,采用时间同步可减小甚至消除。比如,电信和联通互通时,是通过关口局计费,假如电信侧计费起点为20:58(半费时段前),而联通侧计费起点为21:01(半费时段后),则电信、联通计费话单会出现误差,通常的做法是丢弃话单,损失由双方**承担。如果在双方的交换机上可以接收GPS提供的绝对时刻UTC,则双方的计费误差可以控制在毫秒级,从根本上避免话单差异。即使只有一方的交换机可做到接收UTC,在话单决策上,该方可占据裁决地位,为对方消除损失。
4、软件开发也需要时间同步。程序设计是一个设计组的分散任务。这个设计组可以在时间同步的应用不同的服务器上编码,而且有时需要跨地区工作。最终,所有编码都要编入一个程序中,这样必须要求网络时间同步。"编文件"(MAKE)功能或某种"版本控制**"可用于对来自分散服务器的软件进行管理。当源文件被修改后,时间戳可以用来决定哪个文件需要被重建。当网络文件**生成了某种目录后,而服务器和客户对当前时间有不同的认识时,编译文件将出错,不能重建某些源文件,也不能编写基于最新信息的可**作文件。还有许多这样的报告:当工程师往源编码文件输入"修改"(FIX)命令后,最终编写文件的过程中只有"修改"这个命令被省略了。而它给公司带来了极大的难堪和浪费。这种错误是很难检查出的。在使用过程中,编程人员第一个反映是咒骂软件虫。然后,设计组将花费大量的时间检查出软件虫是由于含有丢失文件的基础部分被修改引起的,而这种修改就是因为缺乏服务器时间同步,中新创科(DNTS-7)能确保所有服务器时间同步,实现真正网络时间同步。
5、****的告警和日志同样需要准确记录事件和告警的准确时间,以便进行故障和性能分析。譬如,**中心产生的告警时间,可能不是交换机实际产生告警的准确时间。另外当**中心采用多点日志记录时,如果网络各个节点时间不同步,将造成日志记录的混乱。若需要这些信息快速准确进行故障定位,准确的时间是必不可少的。在政府上网工程和电子商务活动中,数字时间戳服务十分重要,这里也需要精确时钟的时间同步功能。各种政务和商务的文件中,时间是十分重要的信息。在书面合同中,文件签署的日期和签名一样均是十分重要的防止文件被伪造和篡改的关键性内容。在电子文件中,同样需对文件的日期和时间信息采取安全措施,而数字时间戳服务(DTS:digital time-stamp service)就能提供电子文件发表时间的安全保护。在这些需要高精度的时间信息场合,中新创科(DNTS-7)网络时间同步产生是必然的结果。
6、数字时间戳服务(DTS)是网上安全服务项目,由专门的机构提供。时间戳(time-stamp)是一个经加密后形成的凭证文档,它包括三个部分:①需加时间戳的文件的摘要(digest);② DTS收到文件的日期和时间;③ DTS的数字签名。时间戳产生的过程为:用户首先将需要加时间戳的文件用HASH编码加密形成摘要,然后将该摘要发送到DTS,DTS在加入了收到文件摘要的日期和时间信息后再对该文件加密(数字签名),然后送回用户。由Bellcore创造的DTS采用如下的过程:加密时将摘要信息归并到二叉树的数据结构;再将二叉树的根值发表在报纸上,这样更有效地为文件发表时间提供了佐证。注意,书面签署文件的时间是由签署人自己写上的,而数字时间戳则不然,它是由认证单位DTS来加的,以DTS收到文件的时间为依据。因此,时间戳也可作为科学家的科学发明文献的时间认证,更需要高精度网络时间同步。
7、由以上应用可以看到,精确的时间给有些应用带来极大的性能提高。当没有时间同步的时候就已经存在计费了,但是现在谁还能忍受没有时间同步的计费呢?无穷无尽的投诉不单使得**焦头烂额,更会影响用户的信心。在这个竞争激烈的时代,用户可是越来越挑剔了。这里只是罗列了几个典型的时间同步的应用,我们还可以发掘其它的应用,高精度网络时间同步产品可以给我们的**设计带来便捷,给用户带来高质量的网络和应用,更有可能带来更多的以前不能得到的分析结果。
四、网络时钟同步服务器和北斗时钟同步服务器的区别
1、网络时钟同步服务器主要偏重于网络时钟同步功能并未描述时钟信号来源。
2、北斗时钟同步服务器既描述了时钟信号来源是北斗**,又说明了时钟同步功能。
3、网络时钟同步服务器和北斗时钟同步服务器除了时钟信号来源,基本功能差不多。
4、计算机网络**推荐架设自己的时钟服务器,推荐京准电子科技 HR-901GB型
5、目前计算机网络中各主机和服务器等网络设备的时间基本处于无序的状态。随着计算机网络应用的不断涌现,计算机的时间同步问题成为愈来愈重要的事情。以Unix**为例,时间的准确性几乎影响到所有的文件**作。如果一台机器时间不准确,例如在从时间超前的机器上建立一个文件,用ls查看一下,以当前时间减去所显示的文件修改时间会得一个负值,这一问题对于网络文件服务器是一场灾难,文件的可靠性将不复存在。为避免产生本机错误,可从网络上获取时间,这个命令就是rdate,这样**时钟便可与公共源同步了。但是一旦这一公共时间源出现差错就将产生多米诺效应,与其同步的所有机器的时间因此全都错误。
6、另外当涉及到网络上的安全设备时,同步问题就更为重要了。这些设备所生成的日志必须要反映出准确的时间。尤其是在处理繁忙数据的时候,如果时间不同步,几乎不可能将来自不同源的日志关联起来。一旦日志文件不相关连,安全相关工具就会毫无用处。不同步的网络意味着企业不得不花费大量时间手动**安全事件。现在让我们来看看如何才能同步网络,并使得安全日志能呈现出准确地时间。
五、以太网物理层怎么时钟同步
1、一级(全国)基准时钟(PRC)位置
一个典型的同步以太网结构中,在图4所示的三个位置之一具有PRC。
情况A,核心位置:这种结构意味只有少量PRC节点即以PRC为m,b用某种形式分配定时到IWF。
情况B,接入位置:PRC将位于网络中的某些点,典型的在多业务接入点。这种结构意味有比情况A更多的PRC节点即以PRC为中心用某种形式分配定时到1wF。
情况C,IWF位置:PRC将位于IWF并直接同步连接到IWF,这种结构意味有很多PRC节点即每个IWF有~个PRC。
参照图3,提供的同步流是由核心网至IWF。不试图从用户设备往核心网方向分配定时。
OAM功能通过使用OAM协议数据单元(OAMPDU)来实现,由以太帧中的特定头字段识别。
QAMPDU是标准的以太MAC帧,但通过长度/类型为慢协议帧(值8809)和子类型(值0x03)两者来识别OAMPDU。编码字段规定OAMPDU帧的类型。编码字段有八种可能的值,特定值(FE)留作组织化特定的扩展。该组织化扩展是位于数据字段的最初三个字节并组成值××,YY,ZZ(这些值由IEEE定义),剩下39字节用于OAM用户数据,如图5所示。
同步状态信息(SSM)对下游以太交换提供确定可**同步分配方案的机制并返回PRC或者利用更高质量的时钟。
在上游网络故障状态下,同步功能根据SSM和预置的优先权采取适当的**作,选择另一个同步供给。这可能是另一个网络供给或者是外部供给。
SSM由G707定义。在同步以太网络中,SSM的使用准则将有待进一步研究。用户数据字段SSM部分的安排见图6。
用户数据字段剩下的空位装填充数据。
在广域网环境中,**同步以太网产生的抖动和漂移的方案需要满足抖动和漂移的网络容限。
同步以太交换中的同步功能取决于内嵌时钟的性能特性。
当该时钟同步到另一个类似的同步以太网时钟或更高质量的时钟时,该时钟应确保出现适当的网络**作。为了与现存同步网的一致,内嵌时钟必须基于G.813SEC(SDH设备时钟)。当这样的同步以太网与G812SSU(同步供给单元)或SASE(**型同步设备)连接再连接到G.811PRC时,用这样的网络时钟将能保证同步互联,同时也允许现存TDM网与新的分组网之间同步互联。需要指出的是,这些方案不影响现存IEEE802.3的任何特性如频率容差等。
在传统SDH同步网中,规定了不同等级的同步时钟,G.811可以认为是一级PRC,G,812可以认为是二级或**的时钟BITS,G813就是SEC,也是网络中最低的时钟等级。在同步以太网中,也开始考虑组织一个像SDH一样的同步链路。于是就出现了一个新概念:以太网设备时钟(EEC),G.8262就是定义EEC的一个规范。在同步时钟层次中,SEC和EEC是同等级别,也可以互联互通。
关于网络时间同步时钟,ios时间显示秒的介绍到此结束,希望对大家有所帮助。